Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 676
Filter
1.
Pediatric Dermatology ; 40(Supplement 1):24, 2023.
Article in English | EMBASE | ID: covidwho-20245450

ABSTRACT

Background: Lichen planus (LP) is an inflammatory disorder believed to result from CD8+ cytotoxic T-cell (CTL) mediated autoimmune reactions against basal keratinocytes. We present a review of LP following COVID-19 infection and vaccination. Method(s): Literature searches were conducted on PubMed and Google Scholar from 2019 to 7/2022. 35 articles were selected based on subject relevance, and references within articles were also screened. Result(s): 39 cases of post-vaccination LP and 6 cases of post-infection LP were found among case reports and case series. 150 cases of postvaccination LP and 12 cases of post-infection LP were found in retrospective and prospective studies. Conclusion(s): LP is a rare complication of COVID-19 infection and vaccination that may be mediated by overstimulation of T-cell responses and proinflammatory cytokine production. However, it does not represent a limitation against COVID-19 vaccination, and the benefits of vaccination considerably outweigh the risks.

2.
Cytotherapy ; 25(6 Supplement):S245-S246, 2023.
Article in English | EMBASE | ID: covidwho-20245241

ABSTRACT

Background & Aim: With larger accessibility and increased number of patients being treated with CART cell therapy, real-world toxicity continues to remain a significant challenge to its widespread adoption. We have previously shown that allogeneic umbilical cord blood derived (UCB) regulatory T cells (Tregs) can resolve uncontrolled inflammation and can treat acute and immune mediated lung injury in a xenogenic model as well as in patients suffering from COVID-19 acute respiratory distress syndrome. The unique properties of UCB Tregs including: i) lack of plasticity when exposed to inflammatory micro-environments;ii) no requirement for HLA matching;iii) long shelf life of cryopreserved Tregs;and iv) immediate product availability for on demand treatment, makes them an attractive source for treating acute inflammatory syndromes. Therefore, we hypothesized that add-on therapy with UCB derived Tregs may resolve uncontrolled inflammation responsible for CART cell therapy associated toxicity. Methods, Results & Conclusion(s): UCB Tregs were added in 1:1 ratio to CART cells, where no interference in their ability to kill CD19+ Raji cells, was detected at different ratios : 8:1 (80.4% vs. 81.5%);4:1 (62.0% vs. 66.2%);2:1 (50.1% vs. 54.7%);1:1 (35.4% vs. 44.1%) (Fig 1A). In a xenogenic B cell lymphoma model, multiple injections of Tregs were administered after CART injection (Fig 1B), which did not impact distribution of CD8+ T effector cells (Fig 1C) or CART cells cells (Fig 1D) in different organs. No decline in the CAR T levels was observed in the Tregs recipients (Fig 1E). Specifically, no difference in tumor burden was detected between the two arms (Fig 2A). No tumor was detected in CART+Tregs in liver (Fig 2B) or bone marrow (Fig 2C). A corresponding decrease in multiple inflammatory cytokines in peripheral blood was observed in CART+Tregs when compared to CART alone (Fig 2D). Here we show "proof of concept" for add-on therapy with Tregs to mitigate hyper-inflammatory state induced by CART cells without interference in their on-target anti-tumor activity. The timing of Tregs administration after CART cells have had sufficient time for forming synapse with tumor cells allows for preservation of their anti-tumor cytotoxicity, such that the infused Tregs home to the areas of tissue damage to bind to the resident antigen presenting cells which in turn collaborate with Tregs to resolve inflammation. Such differential distribution of cells allow for a Treg "cooling blanket" and lays ground for clinical study. [Figure presented]Copyright © 2023 International Society for Cell & Gene Therapy

3.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20244368

ABSTRACT

Bivalent COVID-19 vaccines that contain two mRNAs encoding Wuhan-1 and Omicron BA.4/5 spike proteins are successful in preventing infection from the original strain and Omicron variants, but the quality of adaptive immune responses is still not well documented. This study aims at characterizing adaptive immune responses to the bivalent booster vaccination in 46 healthy participants. Plasma and PBMC were collected prior and three weeks after bivalent booster. We measured anti-N, anti-S, and RBD IgM, IgA, IgG plasma titers against original, Omicron BA.1, and BA.5 variants (pending) as well as total anti-S IgG titers and surrogate Virus Neutralization capacity against the Alpha, Delta, and BA.1 variant. With spectral flow-cytometry we identified peripheral blood B-cells specific for the RBD of the S-protein of the original and BA.1 variants. T-cell-specific responses were assessed by cytokine release assay after stimulation with SARS-CoV-2 peptides from the original, BA.1, BA.4, and BA.5 variants (pending). Finally, we performed TRB and IGH repertoire studies on sorted CD4+, CD8+, CD19+ lymphocytes, to study breadth of SARS-CoV-2 specific clonotypes (pending). 27/46 participants were analyzed;9 had SARS-CoV-2 infection (COVID+), while 18 are infection naive (COVID-). In both groups, median time since last dose of SARS-CoV-2 vaccine (3rd or 4th) was 11 months. All subjects were positive for anti-S IgG prior to bivalent booster. The COVID + group displayed anti-S IgG pre-booster levels and neutralization against BA.1 higher than the COVID- group. Significant increase post-boost of total anti-S IgG and BA.1 neutralizing activity was detected in the COVID- but not in the COVID+ group;however, no difference in neutralization activity post-boost was detected between the two groups. Furthermore, the COVIDgroup showed significant increase in the frequency of CD19+ and CD27+ switched memory B-cells specific for BA.1 RBD in post-boost compared to pre-boost samples. However, post-boost frequencies of the same B-cells were higher in the COVID+ compared to the COVID- group. These preliminary findings confirm that among individual immunized with the original COVID-19 mRNAvaccine, prior COVID infection provides increased protection against SARS-CoV-2 variants. They also demonstrate that booster immunization with the bivalent vaccine induces robust adaptive immune responses against Omicron variant.[Formula presented][Formula presented]Copyright © 2023 Elsevier Inc.

4.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20243743

ABSTRACT

Ionizable amino lipids are a major constituent of the lipid nanoparticles for delivering nucleic acid therapeutics (e.g., DLin-MC3-DMA in ONPATTRO , ALC-0315 in Comirnaty , SM-102 in Spikevax ). Scarcity of lipids that are suitable for cell therapy, vaccination, and gene therapies continue to be a problem in advancing many potential diagnostic/therapeutic/vaccine candidates to the clinic. Herein, we describe the development of novel ionizable lipids to be used as functional excipients for designing vehicles for nucleic acid therapeutics/vaccines in vivo or ex vivo use in cell therapy applications. We first studied the transfection efficiency (TE) of LNP-based mRNA formulations of these ionizable lipid candidates in primary human T cells and established a workflow for engineering of primary immune T cells. We then adapted this workflow towards bioengineering of CAR constructs to T cells towards non-viral CAR T therapy. Lipids were also tested in rodents for vaccine applications using self-amplifying RNA (saRNA) encoding various antigens. We have then evaluated various ionizable lipid candidates and their biodistribution along with the mRNA/DNA translation exploration using various LNP compositions. Further, using ionizable lipids from the library, we have shown gene editing of various targets in rodents. We believe that these studies will pave the path to the advancement in nucleic acid based therapeutics and vaccines, or cell gene therapy agents for early diagnosis and detection of cancer, and for targeted genomic medicines towards cancer treatment and diagnosis.

5.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20243635

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a fatal pandemic viral disease caused by the severe acute respiratory syndrome corona virus type-2 (SARS-CoV-2). The aim of this study is to observe the associations of IL-6, SARS-COV-2 viral load (RNAemia), IL- 6 gene polymorphism and lymphocytes and monocytes in peripheral blood with disease severity in COVID-19 patients. This study was carried out from March 2021 to January 2022. RT-PCR positive 84 COVID-19 patients and 28 healthy subjects were enrolled. Blood was collected to detect SARS-COV-2 viral RNA (RNAemia) by rRT-PCR, serum IL-6 level by chemiluminescence method, SNPs of IL-6 by SSP-PCR, immunophenotyping of lymphocytes and monocyte by flow cytometry. Serum IL-6 level (pg/ml) was considerably high among critical patients (102.02 +/- 149.7) compared to severe (67.20 +/- 129.5) and moderate patients (47.04 +/- 106.5) and healthy controls (3.5 +/- 1.8). Serum SARS-CoV-2 nucleic acid positive cases detected mostly in critical patients (39.28%) and was correlated with extremely high IL-6 level and high mortality (R =.912, P < 0.001). Correlation between IL-6 and monocyte was statistically significant with disease severity (severe group, p < 0.001, and 0.867*** and critical group p < 0.001 and 0.887***). In healthy controls, moderate, severe and critically ill COVID-19 patients, IL-6 174G/C (rs 1800795) GG genotype was 82.14%, 89.20%, 67.85% and 53.57% respectively. CC and GC genotype had strong association with severity of COVID-19 when compared with GG genotype. Significant statistical difference found in genotypes between critical and moderate groups (p < 0.001, OR-10.316, CI-3.22-23.86), where CC genotype was associated with COVID-19 severity and mortality. The absolute count of T cell, B cell, NK cell, CD4+ T cells and CD8+ T cells were significantly decreased in critical group compared to healthy, moderate and severe group (P < 0.001). Exhaustion marker CD94/NKG2A was increased on NK cells and CD8+ cytotoxic T cell among critical and severe group. Absolute count of monocyte was significantly increased in critical group (P < 0.001). Serum IL-6, IL-6 174 G/C gene and SARS-CoV-2 RNAaemia can be used in clinical practice for risk assessment;T cell subsets and monocyte as biomarkers for monitoring COVID-19 severity. Monoclonal antibody targeting IL-6 receptor and NKG2A for therapeutics may prevent disease progression and decrease morbidity and mortality.Copyright © 2023 Elsevier Inc.

6.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20243277

ABSTRACT

Glioblastoma is an extremely aggressive and difficult cancer to treat, which may partly be due to its limited ability to induce T-cell responses. However, combining viral vector vaccines with other therapies to generate tumor-specific T cells may provide a meaningful benefit to patients. Here, we investigated whether heterologous prime-boost vaccination with chimpanzee-derived adenoviral vector ChAdOx1 and modified vaccinia Ankara (MVA) vaccines could generate therapeutically effective CD8+ T-cell responses against a model antigen P1A, a mouse homolog of human tumorassociated Melanoma Antigen GenE (MAGE)-type antigens, expressed by a BGL-1 mouse glioblastoma cell line. We demonstrated that heterologous prime-boost vaccination with ChAdOx1/MVA vaccines targeting P1A generated a high magnitude of CD8+ T cells specific for the P1A35-43 epitope presented by the MHC class I molecule H-2Ld . Prophylactic vaccination with ChAdOx1/MVA-P1A significantly prolonged the survival of syngeneic mice subcutaneously challenged with P1A-expressing BGL-1 tumors. Furthermore, different vaccination schedules significantly impact the magnitude of antigen-specific CD8+ T-cell responses and may impact protective efficacy. However, the substantial induction of myeloid-derived suppressor cells (MDSCs) by this tumor model presents a significant challenge in the therapeutic setting. Future work will investigate the efficacy of this vaccination strategy on intracranial P1A-expressing BGL-1 models.

7.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20243258

ABSTRACT

Background: People living with cancer are reported to be at increased risk of hospitalization and death following infection with acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This is proposed to be dependent on a combination of intrinsic patient and cancer factors such as cancer subtype, and emerging SARS-CoV-2 variants with differing pathogenicity. However, COVID-19 phenotype evolution across the pandemic from 2020 has not yet been systematically evaluated in cancer patients. Method(s): This study is a population-scale real-world evaluation of Coronavirus outcomes in the United Kingdom for cancer patients from 1st November 2020-31st August 2022. The cancer cohort comprises individuals from Public Health England's national cancer dataset, excluding individuals less than 18 years old. Case-outcome rates, including hospitalization, intensive care and casefatality rates were used to assess the evolution in disease phenotype of COVID-19 in cancer patients. Multivariable logistic regression models were fitted to compare risk of Coronavirus outcomes in the cancer cohort relative to the non-cancer population during the Omicron wave in 2022. Result(s): The cancer cohort comprised of 198,819 positive SARS-CoV-2 tests from 127,322 individual infections. Coronavirus case-outcome rates were evaluated by reference to 18,188,573 positive tests from 15,801,004 individual infections in the non-cancer population. From 2020 to 2022, the SARS-CoV-2 disease phenotype became less severe in both patients with cancer and the non-cancer population, though cancer patients remain at higher risk. In 2022, the relative risk of Coronavirus hospital admission, inpatient hospitalization, intensive care admission and mortality in cancer patients was 3.02x, 2.10x, 2.53x and 2.54x compared to the non-cancer population following multivariable adjustment, respectively. Higher risk of hospital admission and inpatient hospitalization were associated with receipt of B/T cell antibody and/or targeted therapy which also corresponded with an increased risk of Coronavirus mortality. Conclusion(s): The disease phenotype of SARS-CoV-2 in cancer patients in 2022 has evolved significantly from the disease phenotype in 2020. Direct effects of the virus in terms of SARS-CoV-2 hospitalization, intensive care and case fatality rates have fallen significantly over time. However, relative to the general population, people living with cancer and hematological malignancies remain at elevated risk. In order to mitigate the indirect effects of the SARS-CoV-2 pandemic in terms of disruption to cancer care, there should be increased focus on preventative measures. Used in conjunction with vaccination and early treatment programs, this will maximize quality of life for those with cancer during the ongoing pandemic and ensure the best cancer outcomes.

8.
British Journal of Haematology ; 201(Supplement 1):74, 2023.
Article in English | EMBASE | ID: covidwho-20242614

ABSTRACT

Introduction: Combination of daratumumab (Dara) and lenalidomide (Len) may enhance the function of teclistamab (Tec), potentially resulting in improved antimyeloma activity in a broader population. We present initial safety and efficacy data of Tec-Dara- Len combination in patients with multiple myeloma (MM) in a phase 1b study (MajesTEC-2;NCT04722146). Method(s): Eligible patients who received 1-3 prior lines of therapy (LOT), including a proteasome inhibitor and immune-modulatory drug, were given weekly doses of Tec (0.72-or- 1.5 mg/kg with step-up dosing) + Dara 1800 mg + Len 25 mg. Responses per International Myeloma Working Group criteria, adverse events (Aes) per CTCAE v5.0, and for cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) per ASTCT guidelines, were assessed. Result(s): 32 patients received Tec-Dara- Len (0.72 mg/kg, n = 13;1.5 mg/kg, n = 19). At data cut-off (11 July 2022), median follow-up (range) was 5.78 months (1.0-10.4) and median treatment duration was 4.98 months (0.10-10.35). Median age was 62 years (38-75);87.5% were male. Median prior LOT was 2 (1-3), 18.8% were refractory to Dara and 28.1% refractory to Len. CRS was most frequent AE (81.3% [n = 26], all grade 1/2), 95% occurred during cycle1. Median time to onset was 2 days (1-8), median duration was 2 days (1-22). No ICANS were reported. Frequent Aes (>=25.0% across both dose levels) were neutropenia (75.0% [n = 24];grade 3/4: 68.8% [n = 22]), fatigue (43.8% [n = 14];grade 3/4: 6.3% [n = 2]), diarrhoea (37.5% [n = 12];all grade 1/2), insomnia (31.3% [n = 10];grade 3/4: 3.1% [n = 1]), cough (28.1% [n = 9];all grade 1/2), hypophosphatemia (25.0% [n = 8];all grade 1/2), and pyrexia (25% [n = 8];grade 3/4: 6.3% [n = 2]). Febrile neutropenia frequency was 12.5% (n = 4). Infections occurred in 24 patients (75.0%;grade 3/4: 28.1% [n = 9]). Most common were upper respiratory infection (21.9% [n = 7]), COVID-19 (21.9% [n = 7]), and pneumonia (21.9% [n = 7]). Three (9.4%) had COVID-19 pneumonia. One (3.1%) discontinued due to COVID-19 infection and this patient subsequently died of this infection. Overall response rate (ORR, median follow-up) was 13/13 (8.61 months) at 0.72 mg/kg and 13/16 evaluable patients (less mature at 4.17 months) at 1.5 mg/kg. 12 patients attained very good/better partial response at 0.72 mg/kg dose, and response was not mature for 1.5 mg/kg group. Median time to first response was 1.0 month (0.7-2.0). Preliminary pharmacokinetic concentrations of Tec-Dara- Len were similar as seen with Tec monotherapy. Tec-Dara- Len- treatment led to proinflammatory cytokine production and T-cell activation. Conclusion(s): The combination of Tec-Dara- Len has no new safety signals beyond those seen with Tec or Dara-Len individually. Promising ORR supports the potential for this combination to have enhanced early disease control through the addition of Tec. These data warrant further investigation.

9.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(8 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20242368

ABSTRACT

The TG6002.03 trial is a dose-escalation phase 1 clinical trial of TG6002 infusion via the hepatic artery in patients with liver-dominant colorectal cancer metastases. TG6002 is an engineered Copenhagen strain oncolytic Vaccinia virus, deleted of thymidine kinase and ribonucleotide reductase to enhance tumor selective viral replication and expressing FCU1, an enzyme converting the non-cytotoxic prodrug 5-fluorocytosine (5-FC) into the chemotherapeutic compound 5-fluorouracil (5-FU). In this trial, patients with advanced unresectable liver-dominant metastatic colorectal cancer who had failed previous oxaliplatin and irinotecan-based chemotherapy were treated with up to 2 cycles of TG6002 infusion 6 weeks apart via the hepatic artery on day 1 combined with oral 5-FC on days 5 to 14 (where day 1 = TG6002 infusion). TG6002 infusion was performed over 30 minutes via selective catheterization of the hepatic artery proper. 5-FC oral dosing was 50mg/kg x4 daily. Blood was sampled for TG6002 pharmacokinetics and 5-FC and 5-FU measurements. Sampling of liver metastases was performed at screening and on day 4 or day 8 for virus detection and 5-FC and 5-FU quantification. In total, 15 patients (median age 61 years, range 37-78) were treated in 1 UK centre and 2 centres in France and received a dose of TG6002 of 1 x 106 (n=3), 1 x 107 (n=3), 1 x 108 (n=3), or 1 x 109 pfu (n=6). Fourteen of the 15 patients received a single cycle of treatment, including one patient who did not received 5-FC, and one patient received two cycles. TG6002 was transiently detected in plasma following administration, suggesting a strong tissue selectivity for viral replication. In the highest dose cohort, a virus rebound was observed on day 8, concordant with replication time of the virus. In serum samples, 5-FU was present on day 8 in all patients with a high variability ranging from 0.8 to 1072 ng/mL and was measurable over several days after initiation of therapy. Seven of the 9 patients evaluable showed the biodistribution of the virus in liver lesions by PCR testing on day 4 or day 8. Translational blood samples showed evidence for T-cell activation and immune checkpoint receptor-ligand expression. At 1 x 109 pfu, there was evidence for T-cell proliferation and activation against tumour-associated antigens by ELISpot and for immunogenic cell death. In terms of safety, a total of 34 TG6002-related adverse events were reported, of which 32 were grade 1-2 and 2 were grade 3. The maximum tolerated dose was not reached, and a single dose-limiting toxicity was observed consisting of a myocardial infarction in a context of recent Covid-19 infection in a 78-year-old patient. These results indicate that TG6002 infused via the hepatic artery in combination with oral 5-FC was well tolerated, effectively localized and replicated in the tumor tissues, expressed its therapeutic payload and showed anti-tumoral immunological activity.

10.
American Journal of Reproductive Immunology ; 89(Supplement 1):40, 2023.
Article in English | EMBASE | ID: covidwho-20241541

ABSTRACT

Problem: COVID-19 placentitis is a rare complication of maternal SARS-CoV-2 respiratory infection associated with serious adverse obstetric outcomes, including intra-uterine death. The precise role of SARS-CoV-2 in COVID-19 placentitis is uncertain, as trophoblast infection is only observed in around one-half of the affected placenta. Method of Study: Through multi-omic spatial profiling, including Nanostring GeoMX digital spatial profiling and Lunaphore COMET multiplex IHC, we provide a deep characterization of the immunopathology of placentitis from obstetrically complicated maternal COVID-19 infection. Result(s):We show that SARS-CoV-2 infection of placental trophoblasts is associated with a distinct innate and adaptive immune cell infiltrate, florid cytokine expression and upregulation of viral restriction factors. Quantitative spatial analyses reveal a unique microenvironment surrounding virus-infected trophoblasts characterizedd by multiple immune evasion mechanisms, including immune checkpoint expression, cytotoxic T-cell exclusion, and interferon blunting. Placental viral loads inversely correlated with the duration of maternal infection consistent with progressive virus clearance, potentially explaining the absence of virus in some cases. Conclusion(s): Our results demonstrate a central role for placental SARS-CoV-2 infection in driving the unique immunopathology of COVID-19 placentitis.

11.
British Journal of Haematology ; 201(Supplement 1):66-67, 2023.
Article in English | EMBASE | ID: covidwho-20241426

ABSTRACT

In phase 1 of CC-92480- MM- 001 (NCT03374085), the recommended phase 2 dose (RP2D) of mezigdomide plus dexamethasone (MEZI-d) was selected at 1 mg once daily for 21/28 days. Here we report preliminary results from the MEZI-d dose-expansion cohort in patients with heavily pretreated RRMM. Key eligibility criteria were: RRMM;>=3 prior lines of therapy;disease progression <=60 days of last myeloma therapy;refractoriness to lenalidomide/pomalidomide, a proteasome inhibitor, a glucocorticoid, and an anti-CD38 monoclonal antibody. Oral mezigdomide 1 mg was given on days 1-21 of each 28-day cycle, plus weekly dexamethasone (40 mg;20 mg if >75 years of age). Primary objective was to evaluate efficacy (overall response rate [ORR]);secondary objectives included safety/tolerability and additional efficacy assessments. Pharmacodynamics was an exploratory objective. As of 16/Sep/2022, 101 patients had received MEZI-d at the RP2D. Median age was 67 (range 42-85) years, median time since initial diagnosis was 7.4 (1.1-37.0) years;39.6% of patients had plasmacytomas and 37/101 patients had high-risk cytogenetics (56/101 not evaluable). Median number of prior regimens was 6 (3-15);prior therapies included stem cell transplantation (77.2%) and anti-BCMA therapy (29.7%). All patients were refractory to last myeloma regimen and triple-class refractory. Median follow-up was 7.5 (0.5-21.9) months, with a median of 4 (1-20) cycles;10.0% of patients continued treatment;progressive disease was the main reason for discontinuation (60.4%). ORR was 40.6% for all patients. Whilst data are not mature yet, median PFS was 4.4 (95% CI 3.0-5.5) months and median duration of response was 7.6 (95% CI 5.4-9.5) months. ORR was 30.0% in patients with plasmacytomas (N = 40) and 50.0% in patients with prior anti-BCMA therapy (N = 30). Ninety-one (91.1%) patients experienced a grade 3/4 treatment-emergent adverse event (TEAE). Most frequent hematologic grade 3/4 TEAEs were neutropenia (75.2%), anaemia (35.6%), and thrombocytopenia (27.7%);34.7% of patients had grade 3/4 infections, including grade 3/4 pneumonia (15.8%) and COVID-19 (7.0%). Occurrence of other grade 3/4 non-hematologic TEAEs was generally low. Due to TEAEs, 76.2% and 29.7% of patients had mezigdomide dose interruptions and reductions, respectively;90.1% of patients discontinued mezigdomide. Mezigdomide induced substrate degradation and increases in activated and proliferating T cells in patients, including those directly refractory to pomalidomide-based therapies. MEZI-d had a manageable safety profile with encouraging efficacy in patients with triple-class refractory RRMM, including patients with prior BCMA-targeted therapies. These results strongly support the continued development of mezigdomide in MM, and especially in combination.

12.
Infektsionnye Bolezni ; 21(1):5-9, 2023.
Article in Russian | EMBASE | ID: covidwho-20241373

ABSTRACT

Objective. To assess the T-cell immune status against SARS-CoV-2 in HIV patients with or without antiretroviral therapy. Patients and methods. The study included 21 HIV patients who had laboratory-confirmed COVID-19 between September and December 2021 without previous immunization against SARS-CoV-2. The characteristics of HIV infection (CD4-lymphocytes count, HIV viral load in blood plasma, the presence of antiretroviral therapy) and COVID-19 (the severity degree and duration of the disease) were analyzed, the T-cell immune response to SARS-CoV-2 was assessed using the ELISPOT method 1 month after COVID-19. Statistical analysis was carried out by non-parametric methods (Mann-Whitney U test, Spearman's rank correlation coefficient) using the IBM SPSS Statistics 22 software package. Results. The study showed a more favorable course of COVID-19 in HIV-infected persons who achieved HIV suppression in the blood: a mild form of the disease was significantly more common, and the virus was eliminated faster. T-cell immune response to SARS-CoV-2 was recorded more frequently in these patients. Significant correlation of T-cell immune status with the CD4-lymphocytes count and HIV suppression in the blood was revealed. Conclusion. Thus, T-cell immune response to SARS-CoV-2 as assessed using the ELISPOT method was registered significantl.Copyright © 2023, Dynasty Publishing House. All rights reserved.

13.
Cytotherapy ; 25(6 Supplement):S243, 2023.
Article in English | EMBASE | ID: covidwho-20240444

ABSTRACT

Background & Aim: Adoptive T cell immunotherapy holds great promise for the treatment of viral complications. Our group has been developing and trialling virus-specific T cell therapies for more than 20 years. Recently, we have generated a repository of multi-virus-specific T cells for our clinical trials. Unfortunately, for many patients with viral complications, there is no suitable trial through which to access these therapies. In Australia, the Therapeutic Goods Administration has a Special Access Scheme (SAS) to enable provision of unapproved therapies for compassionate use. Our research group is now a leading Australian provider of "off-the-shelf" and custom-grown allogeneic virus-specific T cells to hospitals for patients with no other treatment options. Methods, Results & Conclusion(s): We have generated a repository of multi-virus-specific T cells from 20 healthy donors, with up to 150 doses of T cells per donor generated from a single blood sample. Each product batch is thoroughly characterised in terms of viral antigen specificity, HLA restriction and alloreactivity. These T cells target a combination of Epstein-Barr virus, cytomegalovirus, BK polyomavirus, John Cunningham virus and adenovirus epitopes. We have also generated a repository of SARS-CoV-2-specific T cells and occasionally grow custom patient-specific batches of T cells from nominated donors, on request. Since 2008, we have provided virus-specific T cells to 15 hospitals across Australia, and the volume of supply requests has significantly increased in recent years, as clinicians have gained interest in adoptive immunotherapy. In 2022, we provided T cells for 26 patients via the SAS. The majority were experiencing post-transplant complications, including cytomegalovirus disease, BK virus-associated haemorrhagic cystitis and post-transplant lymphoproliferative disorder. Through our clinical trials, we have developed rigorous processes for T cell therapy manufacture and characterisation, in addition to a computer-based selection algorithm, which we apply to SAS cases. As these cases are not part of a clinical trial, concomitant therapy varies, and monitoring is not uniform. However, we have received reports of clinical benefit from adoptive T cell therapy. These include cases of reduction in viral load, improvement in symptoms, and complete resolution of infection. We believe that these promising T cell therapies should be available to hospitals through a nationally funded centre for cellular therapies for critically ill patients.Copyright © 2023 International Society for Cell & Gene Therapy

14.
Cytotherapy ; 25(6 Supplement):S239, 2023.
Article in English | EMBASE | ID: covidwho-20239698

ABSTRACT

Background & Aim: Immune checkpoint inhibitors (ICI) revolutionized solid tumor treatment, however, in many tumors only partial response is achieved. Allocetra-OTS has an immune modulating effect on macrophages and dendritic cells and showed an excellent safety profile in patients including patients with sepsis and Covid-19. Here we investigated the anti-tumoral effect of Allocetra-OTS cellular therapy, in peritoneal solid tumor animal models. Methods, Results & Conclusion(s): Allocetra-OTS is manufactured from enriched mononuclear fractions and induced to undergo early apoptosis. Balb/c mice were inoculated intraperitoneally (IP) with AB12 (mesothelioma) with pLenti-PGK-V5-Luc-Neo and treated with anti- CTLA4 with or without Allocetra-OTS. Mice were monitored daily for clinical score and weekly using IVIS (Fig.1). Kaplan-Meier log rank test was done for survival. For Allocetra-OTS preparation, enriched mononuclear fractions were collected by leukapheresis from healthy eligible human donors and induced to undergo early apoptosis. Anti- CTLA4 standalone therapy significantly improved survival (Fig.2) from mean 34+/-9 to 44.9 +/-20 days. However, OTS standalone therapy was non-inferior and improved survival to 52.3 +/-20 days. Anti-CTLA4 + Allocetra-OTS combination therapy, ameliorated survival to 86.7+/-20 days with complete cancer remission in 60-100% of mice. Similar anti- tumoral effects of Allocetra-OTS were seen in mesothelioma model in a combination therapy with either anti-PD1 or cisplatin and using anti-PD1 in ID8 ovary cancer model. Based on single cell analysis confirmed by flow cytometry and pathology, the mechanism of action seems to be related or at least associated with an increase in f/480high peritoneal macrophages and a decrease in recruited macrophages, and to f/480high infiltration of the tumor. However, further studies are needed to confirm these observations. During IP tumor progression, Allocetra-OTS as a standalone therapy or in combination with ICI, or cisplatin, significantly reduced tumor size and resulted in complete remission in up to 100% treated mice. Similar results were obtained in ID8 ovary cancer. Based on excellent safety profile in > 50 patients treated in prior clinical trials for sepsis and Covid-19, Phase I/II clinical trial of Allocetra-OTS plus chemotherapy has started and three patient already recruited. A second phase I/II clinical trial of Allocetra- OTS plus anti-PD1, as a second- and third-line therapy in various cancers, was initiated in Q1 2023. [Figure presented]Copyright © 2023 International Society for Cell & Gene Therapy

15.
Cytotherapy ; 25(6 Supplement):S72, 2023.
Article in English | EMBASE | ID: covidwho-20239522

ABSTRACT

Background & Aim: The pro-angiogenic, immunoregulatory and anti- inflammatory properties of MSCs are being exploited for the development of cellular therapies, including the treatment of graft versus host disease (GvHD), inflammatory bowel disease and COVID-19. SNBTS have developed a GMP process to bank umbilical cord MSCs (UC-MSCs) whereby we can reliably bank 100 vials of 10 million P2 UC-MSCs per cord. Each of these vials can be extensively expanded and stored for specific applications. The ultimate aim of the bank is for off-the-shelf clinical use, e.g., in GvHD or as an adjuvant therapy in Islet transplantations. Methods, Results & Conclusion(s): During process development, different basal media and supplements were screened for proliferation and MSC marker expression. Cells grown in promising media combinations were then tested for tri-lineage differentiation (identity), their chemokine/cytokine expression and T-cell inhibition (function) assessed. Medium selected for further GMP development and scale up was ultimately determined by all round performance and regulatory compliance. GMP-like UC-MSCs were shown to have immune-modulatory activity in T-cell proliferation assays at 4:1 or 16:1 ratios. Co-culture of UC-MSCs and freshly isolated leukocytes, +/- the immune activating agent LPS, show a dose dependent survival effect on leukocytes. In particular, neutrophils, which are normally very short lived in vitro demonstrated increased viability when co-cultured with UCMSCs. The survival effect was partially reproduced when UC-MSC were replaced with conditioned medium or cell lysate indicating the involvement of soluble factors. This improved neutrophil survival also correlates with results from leukocyte migration studies that demonstrate neutrophils to be the main cell type attracted to MSCs in in vitro and in vivo. Genetic modification of UC-MSC may improve their therapeutic potential. We have tested gene editing by CRISPR/Cas9 technology in primary UC-MSCS. The CXCL8 gene, highly expressed in UC-MSC, was targeted in isolates from several different donors with editing efficiencies of 78-96% observed. This translated to significant knockdown of CXCL8 protein levels in resting cells, however after stimulation levels of CXCL8 were found to be very similar in edited and non-edited UC-MSCs. This observation requires further study, but overall the results show the potential to generate future banks of primary UC-MSCS with genetically enhanced pro-angiogenic, immunoregulatory and/or anti-inflammatory activities.Copyright © 2023 International Society for Cell & Gene Therapy

16.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20239149

ABSTRACT

Background: SAMD9L is a tumor suppressor involved in regulating the proliferation and maturation of cells, particularly those derived from the bone marrow, and appears to play an important role in cerebellar function. It can be activated in hematopoietic stem cells by type I and type II interferons. It has been hypothesized to act as a critical antiviral gatekeeper regulating interferon dependent demand driven hematopoiesis. Gain of function mutations can present with an immunodeficiency due to transient severe cytopenias during viral infection. Case presentation: We report a 3-year-old boy born full term with a history of severe thrombocytopenia requiring transfusions, developmental delay, ataxia, seizure disorder, and recurrent severe respiratory viral infections. His infectious history was significant for respiratory syncytial virus with shock requiring extracorporeal membrane oxygenation complicated by cerebral infarction and a group A streptococcus empyema, osteomyelitis requiring a left below the knee amputation, and infections with rhinovirus, COVID-19, and parainfluenza requiring hospitalizations for respiratory support. Initial immunologic evaluation was done during his hospitalization for parainfluenza. His full T cell subsets was significant for lymphopenia across all cell lines with CD3 934/microL, CD4 653/microL, CD8 227/microL, CD19 76/microL, and CD1656 61/microL. His mitogen stimulation assay to phytohemagglutinin and pokeweed was normal. Immunoglobulin panel showed a mildly decreased IgM of 25 mg/dL, but normal IgA and IgG. Vaccine titers demonstrated protective titers to 12/22 pneumococcus serotypes, varicella, diphtheria, mumps, rubella, and rubeola. Repeat full T cell subsets 6 weeks later revealed marked improvement in lymphocyte counts with CD3 3083/microL, CD4 2101/microL, CD8 839/microL, CD19 225/microL, and CD1656/microL. A primary immunodeficiency genetic panel was ordered and positive for a heterozygous SAMD9L c.1549T>C (p.Trp517Arg) mutation classified as a variant of unknown significance. Discussion(s): This patient's history of severe viral infections, ataxia, thrombocytopenia, and severe transient lymphopenia during infection is suggestive of a SAM9DL gain of function mutation. Protein modeling done by the laboratory suggests this missense mutation would affect protein structure. The mutation found has been observed in individuals with thrombocytopenia. This case highlights the importance of immunophenotyping both during acute illness and once recovered.Copyright © 2023 Elsevier Inc.

17.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20239010

ABSTRACT

Cancer patients, particularly those receiving B cell-depleting therapy for lymphoid malignancies, are at risk of prolonged SARS-CoV-2 infection, poorer clinical outcomes, and delayed initiation or disruption of cancer-directed therapy (Lee at al., 2022, Clark et al., 2021). We first studied T-cell mediated response to the Wuhan strain of SARS-CoV-2 in a cohort of 69 patients with hematologic and solid cancers, including 18 patients who received prior B-cell depleting therapy. Patients with prolonged COVID-19 clearance, defined by a positive PCR test for longer than 30 days, had a broad but poorly converged CD8+ dominant response and a lacking CD4+ response. To conduct this analysis, we performed bulk T-cell receptor (TCR) sequencing of 121 blood samples and tracked over time TCR repertoire statistics such as clonality, convergence, breadth, and depth of COVID-19-associated TCRs during the active and convalescent periods of COVID-19 infection. These SARS-CoV-2-associated TCRs were identified leveraging immunoSEQ T-MAP database (Snyder et al., 2020), a set of TCR sequences derived from COVID-19 patients and experimentally identified as responsive to MHC Class I and II epitopes from the Wuhan SARS-CoV-2 strain using the multiplex identification of TCR antigen assay (Klinger et al., 2015). To extend our TCR repertoire analysis to other SARS-CoV-2 variants, including Omicron, we developed a deep learning (DL) method to predict TCR specificities for new SARS-CoV-2 epitopes. This DL approach also permits the identification of SARS-CoV2-responsive TCRs private to an individual. Combining this DL approach with our TCR statistics methodology, we studied the dynamics of T-cell response to COVID-19 vaccinations in a cohort of 50 patients with cancer and analyzed TCR repertoire characteristics associated with different degrees of COVID-19 severity in a cohort of 42 cancer patients who contracted the Omicron. Understanding cellular response to novel infections is critical for patient care in the context of cancer, and our novel DL-based approach can leverage existing datasets to analyze and track response to emerging viral strains.

18.
American Journal of Reproductive Immunology ; 89(Supplement 1):28, 2023.
Article in English | EMBASE | ID: covidwho-20238380

ABSTRACT

CD4+ T Cells from Preeclamptic patients with or without a history of COVID-19 during pregnancy cause hypertension, autoantibodies and cognitive dysfunction in a pregnant rat model Objective: Preeclampsia (PE) new onset hypertension (HTN) during pregnancy, is associated with increased autoantibodies, cerebral blood flow (CBF) impaired cognitive function and memory loss. We have shown adoptive transfer of placentalCD4+T cells from PE women into athymic nude pregnant rats causesHTNand autoantibodies associated with PE.COVID-19 (CV) during pregnancy is associated with increased diagnosis of PE. However, we do not know the role of CD4+ T cells stimulated in response to CV in contributing to the PE phenotype seen patients with a Hx of CV during pregnancy. Therefore, we hypothesize that adoptive transfer of placental CD4+ T cells from patients with a CV History (Hx) during pregnancy with PE causes HTN, increased CBF and cognitive dysfunction in pregnant athymic nude recipient rats. Study Design: Placental CD4+ T cells isolated from normotensive (NP), PE, Hx of CV normotensive (CV Hx NT), and Hx of CV with PE (CV Hx+PE) at delivery. One million CD4+ T cells were injected i.p. into nude athymic rats on gestational day (GD) 12. The Barnes maze and the novel object recognition behavioral assays were used to assess cognitive function on GDs 15-19. Blood pressure (MAP) and CBF were measured by carotid catheter and laser Doppler flowmetry on GD19, respectively. A two-way ANOVA was used for statistical analysis. Result(s):MAPincreased inCVHx+PE (111 +/- 4, n = 4) and PE recipient rats (115 +/- 2 mmHg, n = 5) compared to CV Hx NT (100 +/- 4, n = 5) and NP (99 +/- 3 mmHg, n = 4, P < .05). CV Hx+PE and PE exhibited latency with errors navigating in the Barnes maze compared to CV Hx NT and NP groups. Locomotor activity was decreased in CV Hx+PE (P < .05) compared to PE, CV Hx NT, and NP groups. CV Hx+PE and PE spent more time exploring identical objects compared to CV Hx NT and NP groups. PE and CV Hx+ PE had increased CBF compared to CV Hx NT and NP rats. Conclusion(s): Our findings indicate that pregnant recipients of CD4+ T cells from PE with or without a Hx CV during pregnancy cause HTN, increased CBF and cognitive dysfunction compared to recipients of NP or NT Hx COVID-19 CD4+ T cells.

19.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20238091

ABSTRACT

Introduction Patients with hematological malignancies, including multiple myeloma (MM), experience suboptimal responses to SARS-CoV-2 vaccination. Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM) are precursors to MM and exhibit altered immune cell composition and function. The SARS-CoV-2 pandemic and the subsequent population-wide vaccination represent an opportunity to study the real-life immune response to a common antigen. Here, we present updated results from the IMPACT study, a study we launched in November 2020 to characterize the effect of plasma cell premalignancy on response to SARS-CoV2 vaccination (vx). Methods We performed: (i) ELISA for SARS-CoV-2-specific antibodies on 1,887 peripheral blood (PB) samples (237 healthy donors (HD), and 550 MGUS, 947 SMM, and 153 MM patients) drawn preand post-vx;(ii) single-cell RNA, T cell receptor (TCR), and B cell receptor (BCR) sequencing (10x Genomics) on 224 PB samples (26 HD, and 20 MGUS, 48 SMM, and 24 MM patients) drawn preand post-vx;(iii) plasma cytokine profiling (Olink) on 106 PB samples (32 HD, and 38 MGUS and 36 SMM patients) drawn pre- and post-vx;and (iv) bulk TCR sequencing (Adaptive Biotechnologies) on 8 PB samples from 4 patients (2 MGUS, 2 SMM) drawn pre- and post-vx. Results Patients with MGUS and SMM achieved comparable antibody titers to HD two months post-vx. However, patient titers waned significantly faster, and 4 months post-vx we observed significantly lower titers in both MGUS (Wilcoxon rank-sum, p=0.030) and SMM (p=0.010). These results indicate impaired humoral immune response in patients with MGUS and SMM.At baseline, the TCR repertoire was significantly less diverse in patients with SMM compared to HD (Wilcoxon rank-sum, p=0.039), while no significant difference was observed in the BCR repertoire (p=0.095). Interestingly, a significant increase in TCR repertoire diversity was observed post-vx in patients with SMM (paired t-test, p=0.014), indicating rare T cell clone recruitment in response to vaccination. In both HD and patients, recruited clones showed upregulation of genes associated with CD4+ naive and memory T cells, suggesting preservation of the T cell response in SMM, which was confirmed by bulk TCR-sequencing in 4 patients.Lastly, by cytokine profiling, we observed a defect in IL-1beta and IL-18 induction post-vx in patients with SMM compared to HD (Wilcoxon rank-sum, p=0.047 and p=0.015, respectively), two key monocyte-derived mediators of acute inflammation, suggesting an altered innate immune response as well. Conclusion Taken together, our findings highlight that despite the absence of clinical manifestations, plasma cell premalignancy is associated with defects in both innate and adaptive immune responses. Therefore, patients with plasma cell premalignancy may require adjusted vaccination strategies for optimal immunization.

20.
Bali Journal of Anesthesiology ; 5(4):292-293, 2021.
Article in English | EMBASE | ID: covidwho-20238058
SELECTION OF CITATIONS
SEARCH DETAIL